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Abstract 

The design and implementation of Pyramid (http://www-hpc.jpl.nasa.gov/APPS/AMR/), a soft- 
ware  library for performing parallel adaptive mesh refinement  (PAMR) on unstructured meshes, is 
described. This software library can be easily used  in a variety  of unstructured parallel computa- 
tional applications, including parallel finite  element, parallel finite  volume, and parallel visualiza- 
tion applications using  triangular or tetrahedral  meshes. The library contains a suite of well- 
designed and  efficiently  implemented  modules  that  perform  operations in a typical PAMR pro- 
cess. Among these are mesh quality control during successive  parallel adaptive refinement (typi- 
cally guided by a local-error estimator), parallel load-balancing, and parallel mesh partitioning 
using the ParMeTiS  partitioner. The Pyramid library is implemented  in Fortran 90 with an inter- 
face to the Message-Passing Interface (MPI)  library, supporting code  efficiency,  modularity,  and 
portability. An EM  waveguide filter application, adaptively  refined  using the Pyramid library,  is 
illustrated. 

1. Introduction 

Adaptive mesh refinement (AMR) represents a class of numerical techniques that has demon- 
strated great effectiveness for a variety of computational  applications including computational 
physics, structural mechanics, electromagnetics, and  semiconductor device modeling. When an 
application domain is  discretized  into a computational  mesh,  various portions of the mesh can be 
refined, or coarsened, in  regions  where  varying  degrees of accuracy are required. This approach 
saves memory and computing time over methods that  use a uniform resolution over the entire 
application domain. 

Unfortunately, the development of an efficient  and  robust  adaptive mesh refinement  component 
for an application, particularly for unstructured  meshes on multiprocessor systems, is  very  com- 
plex. The motivation  for  our  work  is  to provide an efficient  and  robust parallel AMR library  that 
can be easily integrated into unstructured parallel applications.  Therefore,  our library approach 
separates support for parallel adaptive  refinement  and  mesh  maintainence techniques from  any 
application-specific solution processes. 

Research on parallel AMR  for  unstructured  meshes  has  been  previously reported [ l$]. Most 
efforts are based  on C++, and  many  realize  that  mesh quality control during successive adaptive 
refinement is an active  research topic. Our  work  features  the  use of Fortran 90 and MPI  for  paral- 
lel  AMR  on  unstructured  triangular  and  tetrahedral  meshes,  the  implementation of robust schemes 
for  parallel  adaptive  refinement  and  mesh quality control  during a repeated  AMR process, and a 
“plug-in” component for  stiffness  matrix  construction in finite  element applications. We selected 
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Fortran 90 for our implementation because  it provides new abstraction modeling facilities benefi- 
cal for parallel unstructured AMR  development. This approach also simplifies interface concerns 
with scientific application codes, many of which  were  developed in Fortran 77 for high perfor- 
mance. 

General organization of the parallel AMR process for unstructured meshes. 

2. The AMR Components 

The general organization of the parallel AMR process is illustrated. Initially, the (generally ran- 
dom) input mesh must be repartitioned and redistributed after loading from the disk. The applica- 
tion computation and local error-estimation step occur, after which a logical AMR process occurs. 
(Load balancing can occur based on this process since the refinement scheme is completely 
defined, although it has not  yet physically occurred.) 

The load balancing process moves coarse elements from  the logical refinement, based on a 
weighting scheme, to the proper destination processors using the migration module. At this point, 
the physical  AMR step occurs by applying local  refinement processes. 

Finally, the element quality can be  checked  by performing an explicit mesh smoothing operation 
or 'by ensuring high quality element creation during refinement. We apply the latter approach 
since it prevents degradation of mesh quality after successive adaptive  refinements.  Every stage of 
our AMR process is performed using parallelism. 

3. Fortran 90 and Abstraction Modeling Principles in Parallel AMR  Development 



Fortran 90 modernizes  traditional  Fortran 77 scientific  programming  by adding many new  fea- 
tures. These features allow  programs  to  be designed and  written at a  higher  level of abstraction, 
while  increasing  software  clarity  and safety without  sacrificing performance [7]. Fortran 90’s 
capabilities encourage scientists to  design  new  kinds of advanced  data structures supporting com- 
plex applications, like parallel AMR. These capabilities extend  beyond the well-known array syn- 
tax and dynamic  memory  management operations. 

While Fortran 90 is not an object-oriented  language (certain 00 features can be emulated by soft- 
ware constructs) the  methodology  simplifies  library  interfaces such that the internal details are 
hidden  from library users [5]. Fortran 90 modules and derived  types allow user-defined  types, like 
the mesh,  to be defined  with  associated  routines.  Modules  that  capture essential features of paral- 
lel  AMR can be  combined  with each other, adding to the flexibility and organization of the soft- 
ware  design. These techniques,  and other features, allow the library to contain clearly organized 
interfaces for  use in parallel applications. 

4. The Adaptive Refinement Process 

The adaptive  refinement process is based on logical  and  physical  refinements. The logical refine- 
ment step uses an iterative procedure that  traverses  through  elements of the coarse mesh repeat- 
edly to “define”  a  consistent mesh refinement pattern on the coarse mesh. The result of the logical 
refinement is stored in the data structure of the coarse mesh,  which completely specifies whether 
and how each element  in the coarse mesh should be refined.  Our  adaptive refinement scheme is 
based  on  “edge-marking” for both triangular  and  tetrahedral  meshes. Starting from a  predeter- 
mined subset of elements, the logical  refinement scheme proceeds by marking (or logically refin- 
ing) element  edges  wherever  necessary,  and the refinement  pattern for each element is determined 
by the number of marked  edges in that  element. 

With  information  generated  from the’ logical  refinement step, the  actual mesh refinement becomes 
conceptually simpler, since it  is  completely  specified  how each element should be refined. To 
make the physical  refinement  process simpler and  efficient,  low-level objects are refined  before 
refining high-level objects. On  a  triangular  mesh,  it  means  edges are refined before refining ele- 
ments. 

To perform  a  parallel  logical  adaptive  refinement,  we  extend  the serial scheme so that after tra- 
versing the local  element set for  edge-marking,  each processor updates the status of edges on 
mesh partition  boundaries by exchanging the edge status information (i.e. marked or not  marked) 
with  its neighboring processors. 

5. Mesh Quality Control 

A problem  associated  with  repeated  AMR operations, typically  guided by a local-error estimator, 
is  the deterioration of mesh  quality.  Most mesh smoothing schemes  tend to change the structure of 
a  given  mesh  to  achieve  the  “smoothing  effect”  by  rearranging  nodes  in the mesh. The changes 
made by a smoothing scheme, however,  could  modify  the  desired distribution of element density 
produced by the AMR procedure, and the  cost of performing  a  global mesh smoothing could be 
very  high.  Nevertheless, applying a  relatively  efficient smoothing scheme over the last adaptively 
refined  mesh  is  probably  reasonable  for  mesh quality improvement.  Alternatively, it is  possible to 



prevent, or slow 
down, the degrada- 
tion of element qual- 
ity during a repeated 
adaptive  refinement 
process. 

The mesh quality 
control scheme we 
have applied classi- 
fies elements based 
on how  they  were 
refined. This allows 
us to forsee the 
potential of creating 
elements with poor 
aspect ratios in the 
next  refinement. 
After identifying 
those elements, we 
can replace them 
with a refinement 
pattern that  improves 
upon the geometry. 
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The figure  shows the original refinement of a coarse element (2-3-4). Successive  refinements  will 
destroy the aspect ratio of existing  elements, leading to  poor mesh quality. The approach we apply 
modifies the coarse element refinement,  as  shown,  should either of the child elements require h r -  
ther  refinement (due to local errors or mesh consistency constraints  from neighbor element refine- 
ment). This process controls the mesh quality, at the slight  expense of creating more elements. 

We integrate the mesh quality control feature into our adaptive  refinement scheme, for triangular 
meshes,  by  defining all possible refinement  patterns  for a pair of “twin” transitional elements 
(child elements of element 2-3-4 in the original mesh).  During  the logical refinement step the 
scheme checks all  marked  edges of the twin  elements  allowing  one of the indicated refinement 
patterns to  be selected. To simplify the physical  refinement stage we ensure that the partitioner 
will  not place the twin  elements  onto  different  processors.  This  guarantees  that once mesh migra- 
tion has occured, the physical  refinement  for the parent  element (2-3-4) will create child elements 
in a local  manner.  Refinement  patterns are also applied  for  tetrahedral  meshes as well. 

6. Interlanguage Communication  and  Load Balancing Issues 

Our software needs  to  communicate  with  the  ParMeTiS  parallel  mesh  partitioner,  which is written 
in the C programming  languauge [ 6 ] .  We have a single  routine  that acts as the conduit between 
our  Fortran 90 system  and the C ParMeTiS  library.  Interlanguage  communication  between  Fortran 
90 and C is  not a problem,  provided  the  linker  knows  the  format  of  external  routine  names (gener- 
ally, underscore,  doubleunderscore, UPPERCASE, or lowercase).  Fortran 90 derived  type 



objects can be  passed  by reference to C structures, or simple arrays can  be communicated, but we 
advise using the Fortran 90 SEQUENCE attribute to request the  proper byte-alignment ordering. 
The weighted  graph  helps  ParMeTiS attempt to minimize element  movement and the number of 
components on partition boundaries. 

This process involves converting the  distributed  mesh into a distributed graph by computing the 
dual of the  mesh.  When  the partitioner returns, a mapping for every element is  specified. The 
migration module redistributes the  elements among the processors based  on this mapping. Since 
the communication is  irregular, and unpredictable, an efficient non-blocking irregular communi- 
cation scheme has  been  developed for the element redistribution. In  the  final stage, the mesh data 
structure is reconstructed using efficient heap-sorting techniques. This entire process occurs in a 
parallel and distributed manner. 

7. Application to an EM Waveguide Filter 

Our AMR library has been tested in the finite-element simulation of electromagnetic wave scatter- 
ing in a waveguide filter [4]. The problem is to solve Maxwell’s equation for the electromagnetic 
(EM) fields in the filter domain. A local-error estimate procedure based on the Element Residue 
Method ( E M )  is used in combination with the AMR technique to adaptively construct an opti- 
mal mesh for the problem solution. 

The adaptive refinement and partitioning of a finite element mesh for EM scattering in the 
waveguide filter is illustrated on 16 processors of the NASA  Goddard Cray T3E. An example of 
adaptive refinement for a 3D tetrahedral mesh is  available. 

Adaptive  refinement,  mesh partitioning, and migration applied to a waveguide filter. 

8. Summary 

A complete framework for performing parallel adaptive mesh  refinement in unstructured applica- 
tions on multiprocessor computers has  been described. This includes a robust parallel AMR 
scheme, mesh quality control, load-balancing, the  implementation technique using Fortran 90 and 
MPI, and the interlanguage communication issues. Electromagnetic scattering in a waveguide fil- 
ter has been demonstrated. Parallel performance results on  several multiprocessor systems will  be 
given  in our final  paper.  More  information on Pyramid: A JPL  Parallel Unstructured AMR 
Library is also available. 

The Table 1 gives performance results of the  AMR (logical and physical) step and the  load  bal- 
ancing and migration step. The refinement randomly chooses half  of  the elements per processor. 
The number of elements increases  with  the partitioning slightly due to maintinain mesh consis- 
tency constrains based on this refinement scheme. 
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Table 1: Results for  Waveguide Filter after 3 Refinements on the NASA Goddard  Cray T3E 

I # of Processors 1 AMR  Time 1 Time Load Balancing Number of 
Elements 

32 

295,405 3.75 sec 13.55 sec 64 

292,612 15.36  sec 57.34 sec 

128 

335,527 1.51  sec 0.54 sec 256 

305,22 1 1.65  sec 2.93 sec 

512 397,145 1.86  sec  0.27 sec 
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